Sprendimo funkcija
kai peršasi ($N-i$)-as jaunikis


$p_{N-i+1}(\omega)$ tai gerumo tikimybiu
pasiskirstymas ($N-i+1$)-mais metais.

\begin{eqnarray}q_{N-i+1} &=&\cases {\omega_{N-i}, &if $q_{N-i+1} < q_{N-i}^*$, \cr
q_{N-i} , &if $q_{N-i+1} \ge q_{N-i}^*$.\cr} \nonumber
\end{eqnarray}


$q_{N-i}^*$ gaunam iš lygties

\begin{eqnarray}\omega_{N-i}=u_{N-i+1}(q_{N-i}^*)-c_{N-i}.\end{eqnarray}


Optimalus sprendinys ($N-i$)-ais metais

\begin{eqnarray}d_{N-i}^* &=&\nonumber \\ \cases {1, &if $\omega_{N-i} > u_{N-i+...
...ga_{N-i} \le u_{N-i+1}(q_{N-i+1})-c_{N-i}$.\nonumber\cr}\nonumber
\end{eqnarray}


Cia sprendimo funkcijos $d_{N-i}^*$ priklauso nuo dvieju kintamuju $\omega, q$.
Tai sunkina skaiciavimus ir grafini atvaizdavima



jonas mockus 2004-03-01